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TABLE I.1   Approximate Number 
of Parts in Products



Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved

FIGURE I.1   Model 8430 John Deere tractor, with detailed illustration of its diesel engine, showing the 
variety of materials and processes incorporated. Source: Courtesy of John Deere Company.
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FIGURE I.2   (a) Chart showing various steps involved in traditional design and manufacture of a 
product. Depending on the complexity of the product and the type of materials used, the time span 
between the original concept and the marketing of the product may range from a few months to several 
years. (b) Chart showing general product flow in concurrent engineering, from market analysis to 
marketing the product.
Source: After S. Pugh.
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FIGURE I.3   Redesign of parts to facilitate assembly. Source: After G. Boothroyd and P. Dewhurst.
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TABLE I.3    General Manufacturing 
Characteristics of Various Materials
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FIGURE I.4   Cross-sections of baseball bats made of aluminum (top two) and composite material 
(bottom two).
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FIGURE I.5a   Schematic illustrations of various casting processes.
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FIGURE I.5b   Schematic illustrations of various bulk-deformation processes.
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FIGURE I.5c   Schematic illustrations of various sheet-metal forming processes.
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FIGURE I.5d   Schematic illustrations of various polymer-processing methods. 
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FIGURE I.5e   Schematic illustrations of various machining and finishing processes. 
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FIGURE I.5f   Schematic illustrations of various joining processes.
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FIGURE I.7   (a) Microscopic gears with dust mite. Source: Courtesy of Sandia National Laboratory. 
Printed with permission; (b) a movable micromirror component of a light sensor; note the scale at the 
bottom of the figure. Source: Courtesy of R. Mueller, University of California at Berkeley.
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FIGURE I.8   A saltshaker and pepper mill set. The two metal pieces (at the bottom) for the pepper mill 
are made by powder metallurgy techniques. Source: Metal Powder Industries Federation.
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FIGURE I.9   Automated spot welding of automobile bodies in a mass-production line.
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FIGURE I.10a   Machining a mold cavity for making sunglasses. Computer model of the sunglasses as 
designed and viewed on the monitor. Source: Courtesy of Mastercam/CNC Software, Inc.
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FIGURE I.10b   Machining a mold cavity for making sunglasses. Machining of the die cavity, using a 
computer numerical-control milling machine. Source: Courtesy of Mastercam/CNC Software, Inc.
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FIGURE I.10c   Machining a mold cavity for making sunglasses. Final product produced from the mold. 
Source: Courtesy of Mastercam/CNC Software, Inc.
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TABLE I.4   Average Life 
Expectancy of Various Products
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TABLE I.5   Relative Cost of Repair at Various 
Stages of Product Development and Sale
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TABLE I.6   Typical Cost Breakdown 
in Manufacturing
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TABLE I.7   Approximate Relative Hourly Compensation 
for Workers in Manufacturing in 2010 (United States =  
100)
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FIGURE I.1   An outline of the topics described in Part I.
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FIGURE I.2   An outline of the engineering materials described in Part I.
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FIGURE I.3   An outline of the behavior and the manufacturing properties of materials described in Part 
I.
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Figure 1.1
Turbine blades for jet engines, manufactured by three different methods: left: conventionally 
cast; center: directionally solidified, with columnar grains as can be seen from the vertical 
streaks, and right: single crystal. Although more expensive, single-crystal blades have 
properties at high temperatures that are superior to those of other blades.

Source: Courtesy of N A S A.
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Figure 1.2
An outline of the topics described in Chapter 1.
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Figure 1.3
The body-centered cubic (b c c) crystal structure: (a) hard-ball model.
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Figure 1.4
The face-centered cubic (f c c) crystal structure: (a) hard-ball model.
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Figure 1.5
The hexagonal close-packed (h c p) crystal structure: (a) unit cell.
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Figure 1.6 (1 of 2)
Permanent deformation of a single crystal under a tensile load. The highlighted grid of 
atoms emphasizes the motion that occurs within the lattice. (a) Deformation by slip. The b/a
ratio influences the magnitude of the shear stress required to cause slip.
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Figure 1.6 (2 of 2)
Permanent deformation of a single crystal under a tensile load. The highlighted grid of 
atoms emphasizes the motion that occurs within the lattice. (b) Deformation by twinning, 
involving the generation of a “twin” around a line of symmetry subjected to shear. Note that 
the tensile load results in a shear stress in the plane illustrated.
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Figure 1.7
Schematic illustration of slip lines and slip bands in a single crystal (grain) subjected to a 
shear stress. A slip band consists of a number of slip planes. The crystal at the center of 
the upper illustration is an individual grain surrounded by several other grains.
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Figure 1.8
Schematic illustration of types of defects in a single-crystal lattice: self-interstitial, vacancy, 
interstitial, and substitutional.
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Figure 1.9
Types of dislocations in a single crystal: (a) edge dislocation and (b) screw dislocation.
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Figure 1.10
Movement of an edge dislocation across the crystal lattice under a shear stress. 
Dislocations help explain why the actual strength of metals is much lower than that 
predicted by theory.
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Figure 1.11 (1 of 4)
Schematic illustration of the stages during the solidification of molten metal; each small 
square represents a unit cell. (a) Nucleation of crystals at random sites in the molten metal; 
note that the crystallographic orientation of each site is different.
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Figure 1.11 (2 of 4)
Schematic illustration of the stages during the solidification of molten metal; each small 
square represents a unit cell. (b) Growth of crystals as solidification continues.
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Figure 1.11 (3 of 4)
Schematic illustration of the stages during the solidification of molten metal; each small 
square represents a unit cell. (c) Growth of crystals as solidification continues.
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Figure 1.11 (4 of 4)
Schematic illustration of the stages during the solidification of molten metal; each small 
square represents a unit cell. (d) Solidified metal, showing individual grains and grain 
boundaries; note the different angles at which neighboring grains meet each other.
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Table 1.1
Grain Sizes.
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Figure 1.12 (1 of 2)
Plastic deformation of idealized (equiaxed) grains in a specimen subjected to compression 
(such as occurs in the forging or rolling of metals): (a) before deformation.
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Figure 1.12 (2 of 2)
Plastic deformation of idealized (equiaxed) grains in a specimen subjected to compression 
(such as occurs in the forging or rolling of metals): (b) after deformation. Note the alignment 
of grain boundaries along a horizontal direction; this effect is known as preferred 
orientation.
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Figure 1.13 (1 of 2)
(a) Schematic illustration of a crack in sheet metal that has been subjected to bulging 
(caused, for example, by pushing a steel ball against the sheet). Note the orientation of the 
crack with respect to the rolling direction of the sheet; this sheet is anisotropic.
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Figure 1.13 (2 of 2)
(b) Aluminum sheet with a crack (vertical dark line at the center) developed in a bulge test; 
the rolling direction of the sheet was vertical.

Source: After J.S. Kallend, Illinois Institute of Technology.
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Figure 1.14
Schematic illustration of the effects of recovery, recrystallization, and grain growth on 
mechanical properties and on the shape and size of grains. Note the formation of small 
new grains during recrystallization.
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Table 1.2
Homologous Temperature Ranges for Various Processes.
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Table 2.1
Relative Mechanical Properties of Various Materials at Room Temperature, in Decreasing 
Order. Metals Are in Their Alloy Form.
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Figure 2.1 (1 of 2)
(a) A standard tensile-test specimen before and after pulling, showing original and final 
gage lengths.
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Figure 2.1 (2 of 2)
(b) Stages in specimen behavior in a tension test.



Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved

Figure 2.2
A typical stress–strain curve obtained from a tension test, showing various features.
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Table 2.2 (1 of 2)
Mechanical Properties of Various Materials at Room Temperature.
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Table 2.2 (2 of 2)
Mechanical Properties of Various Materials at Room Temperature.

Note: In the upper part of the table, the lowest values for E, Sy, and Sut and the highest values for 
elongation are for pure metals. Multiply gigapascals (GPa) by 145,000 to obtain pounds per square in. 
(psi), megapascals (MPa) by 145 to obtain psi.



Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved

Figure 2.3
Schematic illustration of the loading and the unloading of a tensile-test specimen. Note that, 
during unloading, the curve follows a path parallel to the original elastic slope.
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Figure 2.4 (1 of 4)
(a) Load–elongation curve in tension testing of a stainless steel specimen.
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Figure 2.4 (2 of 4)
(b) Engineering stress–engineering strain curve, drawn from the data in Fig. 2.4a.
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Figure 2.4 (3 of 4)
(c) True stress–true strain curve, drawn from the data in Fig. 2.4b. Note that this curve has 
a positive slope, indicating that the material is becoming stronger as it is strained.
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Figure 2.4 (4 of 4)
(d) True stress–true strain curve plotted on log–log paper and based on the corrected curve 
in Fig. 2.4c. The correction is due to the triaxial state of stress that exists in the necked 
region of the specimen.
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Table 2.3 (1 of 2)
Typical Values for K and n for Selected Metals.
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Table 2.3 (2 of 2 )
Typical Values for K and n for Selected Metals.
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Figure 2.5
True stress–true strain curves in tension at room temperature for various metals. The 
curves start at a finite level of stress: The elastic regions have too steep a slope to be 
shown in this figure; thus, each curve starts at the yield strength, Sy, of the material.
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Figure 2.6
Effect of temperature on mechanical properties of carbon steel. Most materials display a 
similar temperature sensitivity for elastic modulus, yield strength, ultimate strength, and 
ductility.
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Table 2.4
Typical Ranges of Strain and Deformation Rate in Manufacturing Processes.
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Figure 2.7
The effect of strain rate on the ultimate tensile strength for aluminum. Note that, as the 
temperature increases, the slopes of the curves increase; thus, strength becomes more 
and more sensitive to strain rate as temperature increases.

Source: J.H. Hollomon.
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Figure 2.8
Barreling in compressing a round solid cylindrical specimen (7075-O aluminum) between 
flat dies. Barreling is caused by friction at the die–specimen interfaces, which retards the 
free flow of the material (see also Fig. 14.3).
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Figure 2.9
Disk test on a brittle material, showing the direction of loading and the fracture path.
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Figure 2.10
A typical torsion-test specimen, mounted between the two heads of a testing machine and 
twisted. Note the shear deformation of an element in the reduced section of the specimen.
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Figure 2.11
Two bend-test methods for brittle materials: (a) three-point bending, and (b) four-point 
bending. The two areas shown above the beams represent the bending-moment diagrams, 
described in texts on the mechanics of solids. Note the region of constant maximum 
bending moment in (b); by contrast, the maximum bending moment occurs only at the 
center of the specimen in (a).
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Figure 2.12 (1 of 3)
A selection of hardness testers. (a) A Micro Vickers hardness tester.
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Figure 2.12 (2 of 3)
A selection of hardness testers. (b) Rockwell hardness tester.
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Figure 2.12 (3 of 3)
A selection of hardness testers. (c) Leeb tester.

Source: (a) and (b) Courtesy of Buehler (c) Courtesy of Wilson® Instruments.
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Figure 2.13
General characteristics of hardness-testing methods and formulas for calculating hardness.
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Figure 2.14
Indentation geometry in Brinell hardness testing: (a) annealed metal.
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Figure 2.15
Chart for converting various hardness scales; note the limited range of most of the scales. 
Because of the many factors involved, these conversions are approximate.



Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved

Figure 2.16 (1 of 2)
(a) Typical S-N curves for two metals. Note that, unlike steel, aluminum does not have an 
endurance limit.
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Figure 2.16 (2 of 2)
(b) S-N curves for common polymers.
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Figure 2.17
Ratio of endurance limit to tensile strength for various metals, as a function of tensile 
strength. Because aluminum does not have an endurance limit, the correlations for 
aluminum are based on a specific number of cycles, as is seen in Fig. 2.16.
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Figure 2.18
Schematic illustration of a typical creep curve. The linear segment of the curve (secondary) 
is used in designing components for a specific creep life.
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Figure 2.19 (1 of 2)
Impact test specimens. (a) Izod
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Figure 2.19 (2 of 2)
Impact test specimens. (b) Charpy.
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Figure 2.20 (1 of 4)
Schematic illustration of types of failures in materials: (a) necking and fracture of ductile 
materials.
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Figure 2.20 (2 of 4)
Schematic illustration of types of failures in materials: (b) buckling of ductile materials under 
a compressive load.
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Figure 2.20 (3 of 4)
Schematic illustration of types of failures in materials: (c) fracture of brittle materials in 
compression.
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Figure 2.20 (4 of 4)
Schematic illustration of types of failures in materials: (d) cracking on the barreled surface 
of ductile materials in compression.
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Figure 2.21 (1 of 4)
Schematic illustration of the types of fracture in tension: (a) brittle fracture in polycrystalline 
metals.
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Figure 2.21 (2 of 4)
Schematic illustration of the types of fracture in tension: (b) shear fracture in ductile single 
crystals—see also Fig. 1.6a.
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Figure 2.21 (3 of 4)
Schematic illustration of the types of fracture in tension: (c) ductile cup-and-cone fracture in 
polycrystalline metals.
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Figure 2.21 (4 of 4)
Schematic illustration of the types of fracture in tension: (d) complete ductile fracture in 
polycrystalline metals, with 100% reduction of area.
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Figure 2.22
Surface of ductile fracture in low-carbon steel, showing dimples. Fracture is usually initiated 
at impurities, inclusions, or preexisting voids (microporosity) in the metal.

Source: After K.-H. Habig and D. Klaffke.
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Figure 2.23 (1 of 5)
Sequence of events in the necking and fracture of a tensile-test specimen: (a) early stage 
of necking.
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Figure 2.23 (2 of 5)
Sequence of events in the necking and fracture of a tensile-test specimen: (b) small voids 
begin to form within the necked region.
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Figure 2.23 (3 of 5)
Sequence of events in the necking and fracture of a tensile-test specimen: (c) voids 
coalesce, producing an internal crack.
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Figure 2.23 (4 of 5)
Sequence of events in the necking and fracture of a tensile-test specimen: (d) the rest of 
the cross section begins to fail at the periphery, by shearing.
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Figure 2.23 (5 of 5)
Sequence of events in the necking and fracture of a tensile-test specimen: (e) the final 
fracture, known as a cup- (top fracture surface) and-cone- (bottom surface) fracture, 
surfaces.
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Figure 2.24
Schematic illustration of the deformation of soft and hard inclusions and of their effect on 
void formation in plastic deformation. Note that, because they do not conform to the overall 
deformation of the ductile matrix, hard inclusions can cause internal voids.
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Figure 2.25
Schematic illustration of transition temperature in metals.
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Figure 2.26
Fracture surface of steel that has failed in a brittle manner. The fracture path is 
transgranular (through the grains). Magnification: 200×.

Source: After B.J. Schulze and S.L. Meiley and Packer Engineering Associates, Inc.
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Figure 2.27
Intergranular fracture, at two different magnifications. Grains and grain boundaries are 
clearly visible in this micrograph. The fracture path is along the grain boundaries. 
Magnification: left, 100×; right, 500×.

Source: After B.J. Schulze and S.L. Meiley and Packer Engineering Associates, Inc.
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Figure 2.28
Typical fatigue-fracture surface on metals, showing beach marks. Magnification: left, 500×; 
right, 1000×.

Source: After B.J. Schulze and S.L. Meiley and Packer Engineering Associates, Inc.
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Figure 2.29
Reductions in the fatigue strength of cast steels subjected to various surface-finishing 
operations. Note that the reduction becomes greater as the surface roughness and the 
strength of the steel increase.

Source: M.R. Mitchell.
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Figure 2.30
Residual stresses developed in bending a beam having a rectangular cross section. Note that the 
horizontal forces and moments caused by residual stresses in the beam must be balanced 
internally. Because of nonuniform deformation, especially during cold-metal working operations, 
most parts develop residual stresses.
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Figure 2.31
Distortion of parts with residual stresses after cutting or slitting: (a) flat sheet or plate; (b) 
solid round rod; (c) thin-walled tubing or pipe.


