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TABLE 1.1 Approximate Number
of Parts In Products
TABLE 1.1

Approximate Number of
Parts in Products

Common pencil -
Rotary lawn mower 300
Grand piano 12,000
Automobile 15,000
Boeing 747-400 6,000,000
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FIGURE 1.1 Model 8430 John Deere tractor, with detailed illustration of its diesel engine, showing the
variety of materials and processes incorporated. Source: Courtesy of John Deere Company.
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FIGURE 1.2 (a) Chart showing various steps involved in traditional design and manufacture of a
product. Depending on the complexity of the product and the type of materials used, the time span
between the original concept and the marketing of the product may range from a few months to several
years. (b) Chart showing general product flow in concurrent engineering, from market analysis to
marketing the product.

Source: After S. Pugh.

Definition of product need;
marketing information

!

Conceptual design and evaluation;
feasibility study

¥

Design analysis; codes/standards
review; physical and analytical models

; 5 Computer-aided
Prototype production; testing design (CAD)
and evaluation

Production drawings; I Market I

instruction manuals
1
0 - — * Computer-aided
Matgnal specuﬂca}non; process qnd manufacturing and | Specification |
equipment selection; safety review process planning
l' (CAM and CAPP) lstaticna
<-| Pilot production I | Concept design I
* c6 | =
<-I Production I =8 e
Computer-integrated = Y
manufacturing (CIM) | Detail design |
<-I Inspection and quality assurance I
i r
Packaging; marketing and | Manufacture I
sales literature
Y |

o Product | Sell |
(a) (b)

Copyright ©2014 Pearson Education, All Rights Reserved

@Pearson Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved



FIGURE 1.3 Redesign of parts to facilitate assembly. Source: After G. Boothroyd and P. Dewhurst.
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TABLE 1.3 General Manufacturing
Characteristics of Various Materials

TABLE 1.3

General Manufacturing Characteristics of Various Materials

Alloy Castability Weldability Machinability
Aluminum Excellent Fair Excellent-good
Copper Good-fair Fair Good-fair
Gray cast iron Excellent Difficult Good
White cast iron Good Very poor Very poor
Nickel Fair Fair Fair
Steels Fair Excellent Fair
Zinc Excellent Ditficult Excellent

The ratings shown depend greatly on the particular material, its alloys, and its processing history.
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FIGURE 1.4 Cross-sections of baseball bats made of aluminum (top two) and composite material
(bottom two).
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FIGURE I.5a Schematic illustrations of various casting processes.
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FIGURE 1.5b Schematic illustrations of various bulk-deformation processes.
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FIGURE I.5¢ Schematic illustrations of various sheet-metal forming processes.
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FIGURE 1.5d Schematic illustrations of various polymer-processing methods.

Polymer-processing
processes
| |
Thermoplastics Thermosets Rapid prototyping

Extrusion

Compression molding

Injection molding Fused-deposition modeling

0

l%gl

Blow molding

oy
=7

Thermoforming

Laminated-object
manufacturing

Copyright ©2014 Pearson Education, All Rights Reserved

@Pearson Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved



FIGURE 1.5e Schematic illustrations of various machining and finishing processes.
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FIGURE 1.5f Schematic illustrations of various joining processes.
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FIGURE 1.7 (&) Microscopic gears with dust mite. Source: Courtesy of Sandia National Laboratory.
Printed with permission; (b) a movable micromirror component of a light sensor; note the scale at the
bottom of the figure. Source: Courtesy of R. Mueller, University of California at Berkeley.

(b)
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FIGURE 1.8 A saltshaker and pepper mill set. The two metal pieces (at the bottom) for the pepper mill
are made by powder metallurgy techniques. Source: Metal Powder Industries Federation.
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FIGURE 1.9 Automated spot welding of automobile bodies in a mass-production line.
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FIGURE I.10a Machining a mold cavity for making sunglasses. Computer model of the sunglasses as
designed and viewed on the monitor. Source: Courtesy of Mastercam/CNC Software, Inc.
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FIGURE 1.10b Machining a mold cavity for making sunglasses. Machining of the die cavity, using a
computer numerical-control milling machine. Source: Courtesy of Mastercam/CNC Software, Inc.
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FIGURE 1.10c Machining a mold cavity for making sunglasses. Final product produced from the mold.
Source: Courtesy of Mastercam/CNC Software, Inc.
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TABLE 1.4 Average Life
Expectancy of Various Products

TABLE 1.4

Average Life Expectancy of
Various Products

Life expectancy
Type of product (years)

U.S. dollar bill 1.5
Personal computer 2

Car battery 4

Hair dryer 5

Automobile 8

Dishwasher 10
Kitchen disposal unit 10
Vacuum cleaner 10
Water heater (gas) 12
Clothes dryer (gas) 13
Clothes washer 13
Air-conditioning unit 15

(central)

Manufacturing cell 15
Refrigerator 17
Furnace (gas) 18
Machinery 30
Nuclear reactor 40

Note: Significant variations can be expected,
depending on the quality of the product and
how well it has been maintained.
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TABLE 1.5 Relative Cost of Repalir at Various
Stages of Product Development and Sale

TABLE 1.5

Relative Cost of Repair at Various
Stages of Product Development

and Sale
Relative cost
Stage of repair

When the part is being made 1
Subassembly of the product 10
Assembly of the product 100
Product at the dealership 1000
Product at the customer 10,000
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TABLE 1.6 Typical Cost Breakdown

IN Manufacturing
TABLE 1.6

Typical Cost
Breakdown in
Manufacturing

Design 5%
Materials 50%

Manufacturing
Direct labor 15%

Indirect labor 30%
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TABLE 1.7 Approximate Relative Hourly Compensation
for Workers in Manufacturing in 2010 (United States =
100)

TABLE 1.7

Approximate Relative Hourly Compensation for Workers in Manufacturing
in 2010 (United States = 100)

Norway 166 Italy 96
Switzerland 153 Japan 92
Belgium 146 Spain 76
Denmark 131 New Zealand 59
Germany 126 Israel 58
Sweden 126 Singapore 55
Finland 122 Korea (South) 48
Austria 118 Argentina, Slovakia 36
Netherlands, Australia 118 Portugal 34
France 1.7 Czech Republic 33
Ireland 104 Poland 23
United States 100 Mexico 18
Canada a7 China, India, Philippines 6

Note: Compensation can vary significantly with benefits. Data for China and India are estimates, they
use different statistical measures of compensation, and are provided here for comparison purposes only.
Source: U.S. Department of Labor.
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FIGURE 1.1 An outline of the topics described in Part 1.
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FIGURE 1.2 An outline of the engineering materials described in Part I.
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FIGURE 1.3 An outline of the behavior and the manufacturing properties of materials described in Part
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Figure 1.1

Turbine blades for jet engines, manufactured by three different methods: left: conventionally
cast; center: directionally solidified, with columnar grains as can be seen from the vertical
streaks, and right: single crystal. Although more expensive, single-crystal blades have
properties at high temperatures that are superior to those of other blades.

B

Source: Courtesy of NASA.
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Figure 1.2

An outline of the topics described in Chapter 1.
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Figure 1.3

The body-centered cubic (bcc) crystal structure: (a) hard-ball model.
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Figure 1.4

The face-centered cubic (fcc) crystal structure: (a) hard-ball model.
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Figure 1.5

The hexagonal close-packed (hcp) crystal structure: (a) unit cell.
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Figure 1.6 (1 of 2)

Permanent deformation of a single crystal under a tensile load. The highlighted grid of
atoms emphasizes the motion that occurs within the lattice. (a) Deformation by slip. The b/a
ratio influences the magnitude of the shear stress required to cause slip.
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Figure 1.6 (2 of 2)

Permanent deformation of a single crystal under a tensile load. The highlighted grid of
atoms emphasizes the motion that occurs within the lattice. (b) Deformation by twinning,
involving the generation of a “twin” around a line of symmetry subjected to shear. Note that
the tensile load results in a shear stress in the plane illustrated.
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Figure 1.7

Schematic illustration of slip lines and slip bands in a single crystal (grain) subjected to a
shear stress. A slip band consists of a number of slip planes. The crystal at the center of
the upper illustration is an individual grain surrounded by several other grains.
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Figure 1.8

Schematic illustration of types of defects in a single-crystal lattice: self-interstitial, vacancy,
interstitial, and substitutional.
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Figure 1.9

Types of dislocations in a single crystal: (a) edge dislocation and (b) screw dislocation.

Screw
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Figure 1.10

Movement of an edge dislocation across the crystal lattice under a shear stress.
Dislocations help explain why the actual strength of metals is much lower than that

predicted by theory.

Slip plane
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Figure 1.11 (1 of 4)

Schematic illustration of the stages during the solidification of molten metal; each small
square represents a unit cell. (a) Nucleation of crystals at random sites in the molten metal;
note that the crystallographic orientation of each site is different.

R
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Figure 1.11 (2 of 4)

Schematic illustration of the stages during the solidification of molten metal; each small
square represents a unit cell. (b) Growth of crystals as solidification continues.
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Figure 1.11 (3 of 4)

Schematic illustration of the stages during the solidification of molten metal; each small
square represents a unit cell. (c) Growth of crystals as solidification continues.
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Figure 1.11 (4 of 4)

Schematic illustration of the stages during the solidification of molten metal; each small
square represents a unit cell. (d) Solidified metal, showing individual grains and grain
boundaries; note the different angles at which neighboring grains meet each other.

(d)
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Table 1.1

Grain Sizes.

ASTM No. Grains/mm?  Grains/mm?3

-3 1 0.7
-2 2 2

—1 - 5.6

0 8 16

1 16 45

2 ol 128

3 64 360

- 128 1020
5 256 2900
6 9|22 8200
7 1024 23,000
8 2048 65,000
9 4096 185,000
10 8200 520,000
11 16,400 1,500,000
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Figure 1.12 (1 of 2)

Plastic deformation of idealized (equiaxed) grains in a specimen subjected to compression
(such as occurs in the forging or rolling of metals): (a) before deformation.
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Figure 1.12 (2 of 2)

Plastic deformation of idealized (equiaxed) grains in a specimen subjected to compression
(such as occurs in the forging or rolling of metals): (b) after deformation. Note the alignment
of grain boundaries along a horizontal direction; this effect is known as preferred

orientation.
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Figure 1.13 (1 of 2)

(a) Schematic illustration of a crack in sheet metal that has been subjected to bulging
(caused, for example, by pushing a steel ball against the sheet). Note the orientation of the
crack with respect to the rolling direction of the sheet; this sheet is anisotropic.

Top view

Cra

Sheet

Rolling

direction
ck

Side view

L T
(a)

Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved



Figure 1.13 (2 of 2)

(b) Aluminum sheet with a crack (vertical dark line at the center) developed in a bulge test;
the rolling direction of the sheet was vertical.

(b)

Source: After J.S. Kallend, lllinois Institute of Technology.
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Figure 1.14

Schematic illustration of the effects of recovery, recrystallization, and grain growth on
mechanical properties and on the shape and size of grains. Note the formation of small
new grains during recrystallization.
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Table 1.2

Homologous Temperature Ranges for Various Processes.

Process T/T,,

Cold working <0.3
Warm working  0.3-0.5
Hot working >0.6
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Table 2.1

Relative Mechanical Properties of Various Materials at Room Temperature, in Decreasing
Order. Metals Are in Their Alloy Form.

Strength Hardness Toughness Stiffness Strength/Density
Glass fibers Diamond Ductile metals Diamond Reinforced plastics
Carbon fibers Cubic boron nitride  Reinforced plastics  Carbides Titanium

Kevlar fibers Carbides Thermoplastics Tungsten Steel

Carbides Hardened steels Wood Steel Aluminum
Molybdenum Titanium Thermosets Copper Magnesium
Steels Cast irons Ceramics Titanium Beryllium
Tantalum Copper Glass Aluminum Copper

Titanium Thermosets Ceramics Tantalum

Copper Magnesium Reinforced plastics

Reinforced thermosets Thermoplastics Wood

Reinforced thermoplastics  Tin Thermosets

Thermoplastics Lead Thermoplastics

Lead Rubbers
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Figure 2.1 (1 of 2)

(a) A standard tensile-test specimen before and after pulling, showing original and final

gage lengths.

Original

gage
length, /,

Fracture

(@)

Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved



Figure 2.1 (2 of 2)

(b) Stages in specimen behavior in a tension test.
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Figure 2.2

A typical stress—strain curve obtained from a tension test, showing various features.
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Table 2.2 (1 of 2)

Mechanical Properties of Various Materials at Room Temperature.

Metals (wrought)
Aluminum and its alloys 69-79 35-550 90-600 454 0.31-0.34
Copper and its alloys 105-150 76-110  140-1310 65-3 0.33-0.35
Lead and its alloys 14 14 20-55 50-9 0.43
Magnesium and its alloys 41-45 130-305  240-380 21-5 0.29-0.35
Molybdenum and its alloys ~ 330-360  80-2070  90-2340 40-30 0.32
Nickel and its alloys 180-214  105-1200  345-1450 60-5 0.31
Steels 190-210  205-1725  415-1750 65-2 0.28-0.33
Titanium and its alloys 80-130  344-1380 415-1450 25-7 0.31-0.34
Tungsten and its alloys 350400  550-690  620-760 0 0.27
Zinc and its alloys 50 25-180 240-550 65-5 0.27

@ Pearson
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Table 2.2 (2 of 2)

Mechanical Properties of Various Materials at Room Temperature.

Nonmetallic materials

Ceramics 70-1000 140-2600 0 0.2
Diamond 820-1050 60,000 — 0.2
Glass and porcelain 70-80 140 0 0.24
Silicon carbide (5iC) 200-500 310400 — 0.19
Silicon nitride (SisNy) 280-310 160-580 — 0.26
Rubbers 0.01-0.1 — — 0.5
Thermoplastics 14-3.4 7-80 1000-5 0.32-0.40
Thermoplastics, reinforced 2-50 20-120 10-1 0-0.5
Thermosets 3.5-17 — 35-170 0 0.34-0.5
Boron fibers 380 — 3500 0 0.27
Carbon fibers 275-415 — 2000-3000 0 0.21-0.28
Glass fibers 73-85 - 3500-4600 0 0.22-0.26
Kevlar fibers 62-117 — 2800 0 0.36
Spectra Fibers 73-100 — 2400-2800 3 0.46

Note: In the upper part of the table, the lowest values for E, S, and S, and the highest values for
elongation are for pure metals. Multiply gigapascals (GPa) by 145,000 to obtain pounds per square in.
(psi), megapascals (MPa) by 145 to obtain psi.
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Figure 2.3

Schematic illustration of the loading and the unloading of a tensile-test specimen. Note that,
during unloading, the curve follows a path parallel to the original elastic slope.
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Figure 2.4 (1 of 4)

(a) Load—elongation curve in tension testing of a stainless steel specimen.
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Figure 2.4 (2 of 4)

(b) Engineering stress—engineering strain curve, drawn from the data in Fig. 2.4a.
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Figure 2.4 (3 of 4)

(c) True stress—true strain curve, drawn from the data in Fig. 2.4b. Note that this curve has
a positive slope, indicating that the material is becoming stronger as it is strained.
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Figure 2.4 (4 of 4)

(d) True stress—true strain curve plotted on log—log paper and based on the corrected curve
in Fig. 2.4c. The correction is due to the triaxial state of stress that exists in the necked
region of the specimen.
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Table 2.3 (1 of 2)

Typical Values for K and n for Selected Metals.

Material K (MPa) n
Aluminum
1100-O 180 0.20
2024-T4 690 0.16
5052-0O 202 0.13
6061-0O 205 0.20
6061-T6 410 0.05
7075-0O 400 0.17
Brass
70-30, annealed 900 0.49
85-15, cold-rolled 580 0.34
Cobalt-base alloy, heat-treated 2070 0.50
Copper, annealed 315 0.54
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Table 2.3 (2 of2)

Typical Values for K and n for Selected Metals.

Steel
Low-C, annealed 530 0.26
1020, annealed 745 0.20
4135, annealed 1015 0.17
4135, cold-rolled 1100 0.14
4340, annealed 640 0.15
304 stainless, annealed 1275 0.45
410 stainless, annealed 960 0.10
Titanium
Ti-6Al-4V, annealed, 20°C 1400 0.015

Ti-6Al-4V, annealed, 200°C 1040 0.026
Ti-6Al-4V, annealed, 600°C 650 0.064
Ti-6Al-4V, annealed, 800°C 350 0.146
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Figure 2.5

True stress—true strain curves in tension at room temperature for various metals. The
curves start at a finite level of stress: The elastic regions have too steep a slope to be
shown in this figure; thus, each curve starts at the yield strength, S, of the material.
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Figure 2.6

Effect of temperature on mechanical properties of carbon steel. Most materials display a
similar temperature sensitivity for elastic modulus, yield strength, ultimate strength, and
ductility.
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Table 2.4

Typical Ranges of Strain and Deformation Rate in Manufacturing Processes.

Process True Strain Deformation rate (m/s)
Cold working

Forging, rolling 0.1-0.5 0.1-100

Wire and tube drawing 0.05-0.5 0.1-100
Explosive forming WSS 10-100
Hot working and warm working

Forging, rolling 0.1-0.5 0.1-30

Extrusion 2-5 0.1-1
Machining 1-10 0.1-100
Sheet-metal forming 0.1-0.5 0.05-2
Superplastic forming 0.2-3 10=4-10~2
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Figure 2.7

The effect of strain rate on the ultimate tensile strength for aluminum. Note that, as the
temperature increases, the slopes of the curves increase; thus, strength becomes more
and more sensitive to strain rate as temperature increases.
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Figure 2.8

Barreling in compressing a round solid cylindrical specimen (7075-O aluminum) between
flat dies. Barreling is caused by friction at the die—specimen interfaces, which retards the
free flow of the material (see also Fig. 14.3).
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Figure 2.9
Disk test on a brittle material, showing the direction of loading and the fracture path.
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Figure 2.10

A typical torsion-test specimen, mounted between the two heads of a testing machine and
twisted. Note the shear deformation of an element in the reduced section of the specimen.
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Figure 2.11

Two bend-test methods for brittle materials: (a) three-point bending, and (b) four-point
bending. The two areas shown above the beams represent the bending-moment diagrams,
described in texts on the mechanics of solids. Note the region of constant maximum
bending moment in (b); by contrast, the maximum bending moment occurs only at the
center of the specimen in (a).
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Figure 2.12 (1 of 3)

A selection of hardness testers. (a) A Micro Vickers hardness tester.
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Figure 2.12 (2 of 3)

A selection of hardness testers. (b) Rockwell hardness tester.
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Figure 2.12 (3 of 3)

A selection of hardness testers. (c) Leeb tester.

Source: (a) and (b) Courtesy of Buehler (c) Courtesy of Wilson® Instruments.
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Figure 2.13

General characteristics of hardness-testing methods and formulas for calculating hardness.
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Figure 2.14

Indentation geometry in Brinell hardness testing: (a) annealed metal.
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Figure 2.15

Chart for converting various hardness scales; note the limited range of most of the scales.
Because of the many factors involved, these conversions are approximate.
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Figure 2.16 (1 of 2)

(a) Typical S-N curves for two metals. Note that, unlike steel, aluminum does not have an
endurance limit.
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Figure 2.16 (2 of 2)

(b) S-N curves for common polymers.
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Figure 2.17

Ratio of endurance limit to tensile strength for various metals, as a function of tensile
strength. Because aluminum does not have an endurance limit, the correlations for
aluminum are based on a specific number of cycles, as is seen in Fig. 2.16.
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Figure 2.18

Schematic illustration of a typical creep curve. The linear segment of the curve (secondary)
is used in designing components for a specific creep life.
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Figure 2.19 (1 of 2)

Impact test specimens. (a) I1zod
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Figure 2.19 (2 of 2)

Impact test specimens. (b) Charpy.
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Figure 2.20 (1 of 4)

Schematic illustration of types of failures in materials: (a) necking and fracture of ductile
materials.
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Figure 2.20 (2 of 4)

Schematic illustration of types of failures in materials: (b) buckling of ductile materials under
a compressive load.
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Figure 2.20 (3 of 4)

Schematic illustration of types of failures in materials: (c) fracture of brittle materials in
compression.
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Figure 2.20 (4 of 4)

Schematic illustration of types of failures in materials: (d) cracking on the barreled surface
of ductile materials in compression.

o ) o 0 ) Barreling
Cracks

(d)

@Pearson Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved



Figure 2.21 (1 of 4)

Schematic illustration of the types of fracture in tension: (a) brittle fracture in polycrystalline
metals.
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Figure 2.21 (2 of 4)

Schematic illustration of the types of fracture in tension: (b) shear fracture in ductile single
crystals—see also Fig. 1.6a.
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Figure 2.21 (3 of 4)

Schematic illustration of the types of fracture in tension: (c) ductile cup-and-cone fracture in
polycrystalline metals.
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Figure 2.21 (4 of 4)

Schematic illustration of the types of fracture in tension: (d) complete ductile fracture in
polycrystalline metals, with 100% reduction of area.
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Figure 2.22

Surface of ductile fracture in low-carbon steel, showing dimples. Fracture is usually initiated
at impurities, inclusions, or preexisting voids (microporosity) in the metal.
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Source: After K.-H. Habig and D. Klaffke.
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Figure 2.23 (1 of 5)

Sequence of events in the necking and fracture of a tensile-test specimen: (a) early stage
of necking.
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Figure 2.23 (2 of 5)

Sequence of events in the necking and fracture of a tensile-test specimen: (b) small voids
begin to form within the necked region.
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Figure 2.23 (3 of 5)

Sequence of events in the necking and fracture of a tensile-test specimen: (c) voids
coalesce, producing an internal crack.
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Figure 2.23 (4 of 5)

Sequence of events in the necking and fracture of a tensile-test specimen: (d) the rest of
the cross section begins to fail at the periphery, by shearing.
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Figure 2.23 (5 of 5)

Sequence of events in the necking and fracture of a tensile-test specimen: (e) the final
fracture, known as a cup- (top fracture surface) and-cone- (bottom surface) fracture,
surfaces.
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Figure 2.24

Schematic illustration of the deformation of soft and hard inclusions and of their effect on
void formation in plastic deformation. Note that, because they do not conform to the overall
deformation of the ductile matrix, hard inclusions can cause internal voids.
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Figure 2.25

Schematic illustration of transition temperature in metals.
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Figure 2.26

Fracture surface of steel that has failed in a brittle manner. The fracture path is
transgranular (through the grains). Magnification: 200x.

Source: After B.J. Schulze and S.L. Meiley and Packer Engineering Associates, Inc.
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Figure 2.27

Intergranular fracture, at two different magnifications. Grains and grain boundaries are
clearly visible in this micrograph. The fracture path is along the grain boundaries.
Magnification: left, 100x%; right, 500x.

Source: After B.J. Schulze and S.L. Meiley and Packer Engineering Associates, Inc.
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Figure 2.28

Typical fatigue-fracture surface on metals, showing beach marks. Magnification: left, 500x;
right, 1000x.

Source: After B.J. Schulze and S.L. Meiley and Packer Engineering Associates, Inc.
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Figure 2.29

Reductions in the fatigue strength of cast steels subjected to various surface-finishing
operations. Note that the reduction becomes greater as the surface roughness and the
strength of the steel increase.
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Figure 2.30

Residual stresses developed in bending a beam having a rectangular cross section. Note that the
horizontal forces and moments caused by residual stresses in the beam must be balanced
internally. Because of nonuniform deformation, especially during cold-metal working operations,
most parts develop residual stresses.
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Figure 2.31

Distortion of parts with residual stresses after cutting or slitting: (a) flat sheet or plate; (b)
solid round rod; (c) thin-walled tubing or pipe.
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